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Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why | care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API
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Virtual filesystem

File layout created by code — on the fly

("]

Queries in pluggable DSLs

("]

«A Lisp data structure as a directory»
«SQL SELECT as a directory»

®
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Virtual filesystem

File layout created by code — on the fly

«A Lisp data structure as a directory»

o

o

@ Queries in pluggable DSLs
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o «SQL SELECT as a directory»
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Demo

Install some native stuff...
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 4/17



Demo

Install some native stuff...
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 4/17



Demo (pointless)

Install some native stuff..
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results
. it is empty: no queries to represent

/17
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Demo: more than a boring FS

+1 filesystem, with large numbers handled on the fly:

(mk-pair-generator x
(let ((xn (ignore-errors (parse-integer (first x)))))
(if xn ~((, (first x) ,(1+ xn)))
(loop for k from 1 to 10
collect ~(,(format nil "~a" k) ,(1+ k)))))
(mk-file (first x) (format nil "~a" (second x))))

$ 1s query-fs-test/results/1plus/

1 10 2 3 4 5 6 7 8 9

$ cat query-fs-test/results/1plus/3

4

$ cat query-fs-test/results/1plus/33

34

$ cat query-fs-test/results/lplus/no

cat: /home/raskin/queries/plusl/no: No such file or directory
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SQL means a DB... | use PostgreSQL (and | have a local server)
Let's prepare a playground

$ echo ".." > /home/test/psql-pass
$ createdb test_queryfs
$ psql -d test_queryfs -c \
"create table test_table (
name varchar,
content varchar

)"
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Now let's install some stuff for Query-FS

$ package-manager install postgresql-client
* (ql:quickload :clsql-postgresql :esrap-peg)

And start filling query-fs-test/queries/db.sql2

set db-server="127.0.0.1"
set db-name="test_queryfs"
set db-type="postgresql"
set db-user="test"

read db-password < "/home/test/psql-pass"
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Demo (SQL)

Now some actual query

mkdir "all" do
for x in "select name, content from test_table"
with-file $name do
on-read $x[1]
on-write data "update test_table
set content = ${data}
where name = ${namel}"
on-remove "delete from test_table
where name = ${name}"
done
on-create-file name "insert into test_table
(name) values (${name})"
done
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It works

$ echo qwe > query-fs-test/results/db/all/123

$ echo asd > query-fs-test/results/db/all/12345
$ cat query-fs-test/results/db/all/123

qwe

March 21, 2022 9/17
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Demo: more than a boring FS

Extend the query

mkdir "silly" do
for x in "select ${x[0]},
'Indeed, we have '|| ${x[0]} ||' here!'
where ${x[0]} is not null"
with-file $name do
on-read $x[1]

done

done

And now...

$ 1s query-fs-test/results/db/silly/
$ cat query-fs-test/results/db/silly/code
Indeed, we have code here!
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e CL-FUSE
o CFFI bindings for FUSE
o Direct use of FUSE medium-level API
o A slightly lispy wrapper on top

o CL-FUSE-Meta-FS

o Produce list-based layout instead of callbacks

e A set of macros to define layouts
Used in 1plus.cl

e Missing: CLOS-based API

o Query-FS

e Plugins to parse queries

e For each query, plugin outputs lisp code
CL-FUSE-Meta-FS layout descriptions

o Complete FS definition composed of translated queries

o Queries can be updated while FS is mounted
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PEG parsing

Esrap-PEG: frontend for Esrap
An abstract grammar

whitespace <_ n n / ll\r“ / Il\n|| / ll\tll
S <- WhiteSpace +
OnWrite <- "on-write" S Identifier S SQLCommand

And pattern-matching to process the AST

(OnWrite
((_ _ 7var _ 7body)
“(:on-write
(, (! ?var)
, (1 ?body)))))

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 12 /17



Plugin

CL-FUSE
Query-FS
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Plugin

Query

CL-FUSE
Query-FS
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Query code :
[ (toplevel) @

CL-FUSE
Query-FS
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Query-FS request
Query code
(toplevel)

CL-FUSE
Query-FS

FUSE
(kernel)
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Query-FS request

Query code (Client Progra@

(toplevel)

read /query-fs/query/alb

FUSE
(kernel)

CL-FUSE
Query-FS
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Query-FS request

Query code
(toplevel)

Query code
/a

(Client Progra@

read /query-fs/query/alb

CL-FUSE
Query-FS

(kernel)
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Query-FS request

(Client Progra@

Query code
(toplevel)

Query code
/a
Query code
/alb

read /query-fs/query/a/b

(kernel)
/query/alb
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Query-FS request

(Client Progra@

Query code
(toplevel)

Query code
/a

get content

Query code Content
/alb

read /query-fs/query/a/b

(kernel)
/query/alb
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Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABls
that's before the unavoidable meaningful part

@ In-process compatibility: threads, signals, allocations

®

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

(]

Still need serialisation; at least breaking FS APl is discouraged

(]

Different processes, diferent rules

(]

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them
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Remarks on implementation

Filesystem API in general
e Encodings: decide whether (or when) filenames must be valid UTF8..
FUSE

@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1ibfuse.so

e Hard to handle
o One-function shared library just to wrap this
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Query-FS: my usage

Email: indexed in PostgreSQL DB, read in Vim using Query-FS
Planet.Lisp.org (and many other feeds): same

®

[

Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

(]

File tagging: implemented... but | don't use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

[

Advanced FS functionality: inotify, mmap, etc.

®

Smarter caching based on lower-level FUSE API

(4

In-Lisp FUSE protocol parsing instead of libfuse
@ 9p
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Thanks for your attention!

Questions?

https://gitlab.common-lisp.net/cl-fuse/query-fs
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