Query-FS:

Integrating with UNIX from Common Lisp via FS API

Michael Raskin, raskin@mccme.ru
TU Munich

March 21, 2022

X TUM

The author is supported by project receiving funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant

agreement No 787367 (PaVeS)

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

1/

17

Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why | care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 2/17

Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why I care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 2/17

Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why | care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 2/17

Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why | care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 2/17

Disclaimer

Query-FS is a virtual POSIX FS, implemented using FUSE;
Lisp is used as a great tool, not something defining every choice

@ Why | care and why you might care probably differ
.. but | want to find other use-cases and add support!
o | like Common Lisp where it fits, even if nothing is perfect
.. but the same for Bash and SQL and UNIX process boundaries

@ | even use Vim not Emacs
.. but Vim, Firefox, Emacs — FS API is universal

For me, something flexible enough for SQL as FS,
for you, exporting functionality in CL to whatever speaks POSIX FS API

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 2/17

Virtual filesystem

File layout created by code — on the fly

("]

Queries in pluggable DSLs

("]

«A Lisp data structure as a directory»
«SQL SELECT as a directory»

®

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

@ Virtual filesystem
o File layout created by code — on the fly
°

Queries in pluggable DSLs

("]

«A Lisp data structure as a directory»
«SQL SELECT as a directory»

("]

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

Virtual filesystem

File layout created by code — on the fly

«A Lisp data structure as a directory»

o

o

@ Queries in pluggable DSLs

o

o «SQL SELECT as a directory»

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

Demo

Install some native stuff...
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 4/17

Demo

Install some native stuff...
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 4/17

Demo (pointless)

Install some native stuff..
$ package-manager install gcc libfuse-development
Get the latest update and dependencies

$ cd ~/quicklisp/local-projects
$ git clone https://gitlab.common-lisp.net/cl-fuse/query-fs
* (ql:quickload :query-fs)

Run it!
* (query-fs:run-fs :target "query-fs-test")

You now have query-fs-test/results
. it is empty: no queries to represent

/17

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 4/

Demo: more than a boring FS

+1 filesystem, with large numbers handled on the fly:

(mk-pair-generator x
(let ((xn (ignore-errors (parse-integer (first x)))))
(if xn ~((, (first x) ,(1+ xn)))
(loop for k from 1 to 10
collect ~(,(format nil "~a" k) ,(1+ k)))))
(mk-file (first x) (format nil "~a" (second x))))

$ 1s query-fs-test/results/1plus/

1 10 2 3 4 5 6 7 8 9

$ cat query-fs-test/results/1plus/3

4

$ cat query-fs-test/results/1plus/33

34

$ cat query-fs-test/results/lplus/no

cat: /home/raskin/queries/plusl/no: No such file or directory

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 5/17

Demo: more than a boring FS

+1 filesystem, with large numbers handled on the fly:

(mk-pair-generator x
(let ((xn (ignore-errors (parse-integer (first x)))))
(if xn ~((, (first x) ,(1+ xn)))
(loop for k from 1 to 10
collect ~(,(format nil "~a" k) ,(1+ k)))))
(mk-file (first x) (format nil "~a" (second x))))

$ 1s query-fs-test/results/1plus/

1 10 2 3 4 5 6 7 8 9

$ cat query-fs-test/results/1plus/3

4

$ cat query-fs-test/results/1plus/33

34

$ cat query-fs-test/results/1plus/no

cat: /home/raskin/queries/plusil/no: No such file or directory

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 5/17

SQL means a DB... | use PostgreSQL (and | have a local server)
Let's prepare a playground

$ echo ".." > /home/test/psql-pass
$ createdb test_queryfs
$ psql -d test_queryfs -c \
"create table test_table (
name varchar,
content varchar

)"

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

Now let's install some stuff for Query-FS

$ package-manager install postgresql-client
* (ql:quickload :clsql-postgresql :esrap-peg)

And start filling query-fs-test/queries/db.sql2

set db-server="127.0.0.1"
set db-name="test_queryfs"
set db-type="postgresql"
set db-user="test"

read db-password < "/home/test/psql-pass"

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 7/17

Now let's install some stuff for Query-FS

$ package-manager install postgresql-client
* (ql:quickload :clsql-postgresql :esrap-peg)

And start filling query-fs-test/queries/db.sql2

set db-server="127.0.0.1"
set db-name="test_queryfs"
set db-type="postgresql"
set db—user="test"

read db-password < "/home/test/psql-pass"

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 7/17

Demo (SQL)

Now some actual query

mkdir "all" do
for x in "select name, content from test_table"
with-file $name do
on-read $x[1]
on-write data "update test_table
set content = ${data}
where name = ${namel}"
on-remove "delete from test_table
where name = ${name}"
done
on-create-file name "insert into test_table
(name) values (${name})"
done

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

It works

$ echo qwe > query-fs-test/results/db/all/123

$ echo asd > query-fs-test/results/db/all/12345
$ cat query-fs-test/results/db/all/123

qwe

March 21, 2022 9/17

Michael Raskin, raskin@mccme.ru Query-FS

Demo: more than a boring FS

Extend the query

mkdir "silly" do
for x in "select ${x[0]},
'Indeed, we have '|| ${x[0]} ||' here!'
where ${x[0]} is not null"
with-file $name do
on-read $x[1]

done

done

And now...

$ 1s query-fs-test/results/db/silly/
$ cat query-fs-test/results/db/silly/code
Indeed, we have code here!

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 10/17

Demo: more than a boring FS

Extend the query

mkdir "silly" do
for x in "select ${x[0]},
'Indeed, we have '|| ${x[0]} ||' here!'
where ${x[0]} is not null"
with-file $name do
on-read $x[1]

done

done

And now...

$ 1s query-fs-test/results/db/silly/
$ cat query-fs-test/results/db/silly/code
Indeed, we have code here!

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 10/17

e CL-FUSE
o CFFI bindings for FUSE
o Direct use of FUSE medium-level API
o A slightly lispy wrapper on top

o CL-FUSE-Meta-FS

o Produce list-based layout instead of callbacks

e A set of macros to define layouts
Used in 1plus.cl

e Missing: CLOS-based API

o Query-FS

e Plugins to parse queries

e For each query, plugin outputs lisp code
CL-FUSE-Meta-FS layout descriptions

o Complete FS definition composed of translated queries

o Queries can be updated while FS is mounted

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 11 /17

e CL-FUSE
o CFFI bindings for FUSE
o Direct use of FUSE medium-level API
o A slightly lispy wrapper on top

o CL-FUSE-Meta-FS

o Produce list-based layout instead of callbacks

e A set of macros to define layouts
Used in 1plus.cl

e Missing: CLOS-based API

o Query-FS

e Plugins to parse queries

e For each query, plugin outputs lisp code
CL-FUSE-Meta-FS layout descriptions

o Complete FS definition composed of translated queries

o Queries can be updated while FS is mounted

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 11 /17

e CL-FUSE
o CFFI bindings for FUSE
o Direct use of FUSE medium-level API
o A slightly lispy wrapper on top

o CL-FUSE-Meta-FS

o Produce list-based layout instead of callbacks

e A set of macros to define layouts
Used in 1plus.cl

o Missing: CLOS-based API

o Query-FS

e Plugins to parse queries

e For each query, plugin outputs lisp code
CL-FUSE-Meta-FS layout descriptions

o Complete FS definition composed of translated queries

o Queries can be updated while FS is mounted

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 11 /17

e CL-FUSE
o CFFI bindings for FUSE
o Direct use of FUSE medium-level API
o A slightly lispy wrapper on top

o CL-FUSE-Meta-FS

o Produce list-based layout instead of callbacks

e A set of macros to define layouts
Used in 1plus.cl

o Missing: CLOS-based API

o Query-FS

e Plugins to parse queries

e For each query, plugin outputs lisp code
CL-FUSE-Meta-FS layout descriptions

o Complete FS definition composed of translated queries

o Queries can be updated while FS is mounted

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

PEG parsing

Esrap-PEG: frontend for Esrap
An abstract grammar

whitespace <_ n n / ll\r“ / Il\n|| / ll\tll
S <- WhiteSpace +
OnWrite <- "on-write" S Identifier S SQLCommand

And pattern-matching to process the AST

(OnWrite
((_ _ 7var _ 7body)
“(:on-write
(, (! ?var)
, (1 ?body)))))

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 12 /17

Plugin

CL-FUSE
Query-FS

March 21, 2022 13 /17

Plugin

Query

CL-FUSE
Query-FS

March 21, 2022 13 /17

Query code :
[(toplevel) @

CL-FUSE
Query-FS

March 21, 2022 13 /17

Query-FS request
Query code
(toplevel)

CL-FUSE
Query-FS

FUSE
(kernel)

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

Query code (Client Progra@

(toplevel)

read /query-fs/query/alb

FUSE
(kernel)

CL-FUSE
Query-FS

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

Query code (Client Progra@

(toplevel)

read /query-fs/query/alb

(kernel)

CL-FUSE
Query-FS

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

(Client Progra@

Query code
(toplevel)

read /query-fs/query/alb

(kernel)

CL-FUSE
Query-FS

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

Query code
(toplevel)

Query code
/a

(Client Progra@

read /query-fs/query/alb

CL-FUSE
Query-FS

(kernel)

Michael Raskin, raskin@mccme.ru

Query-FS

March 21, 2022 13 /17

Query-FS request

(Client Progra@

Query code
(toplevel)

Query code
/a
Query code
/alb

read /query-fs/query/a/b

(kernel)
/query/alb

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

(Client Progra@

Query code
(toplevel)

Query code
/a

get content

Query code Content
/alb

read /query-fs/query/a/b

(kernel)
/query/alb

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

(Client Progra@

Query code
(toplevel)

Query code
/a

get content

Query code Content
/alb

read /query-fs/query/a/b

(kernel)

/query/alb

Content

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Query-FS request

Query code
(toplevel)

Query code
/a

get content

Query code Content
/alb

Content

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 13 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABls
that's before the unavoidable meaningful part

@ In-process compatibility: threads, signals, allocations

®

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

(]

Still need serialisation; at least breaking FS APl is discouraged

(]

Different processes, diferent rules

(]

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

@ In-process compatibility: threads, signals, allocations

®

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

(]

Still need serialisation; at least breaking FS APl is discouraged

(]

Different processes, diferent rules

(]

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

In-process compatibility: threads, signals, allocations

®

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

(]

Still need serialisation; at least breaking FS APl is discouraged

(]

Different processes, diferent rules

(]

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

In-process compatibility: threads, signals, allocations

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

(]

Still need serialisation; at least breaking FS APl is discouraged

(7]

Different processes, diferent rules

®

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

In-process compatibility: threads, signals, allocations

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

Still need serialisation; at least breaking FS API is discouraged

(7]

Different processes, diferent rules

®

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

In-process compatibility: threads, signals, allocations

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

Still need serialisation; at least breaking FS API is discouraged

Different processes, diferent rules

®

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 14 /17

Remarks on FS interface

Many of us value stability and flexibility
o C FFl integration needs support from both sides

o FFl is fragile: memory layout of arguments, ABIs
that's before the unavoidable meaningful part

In-process compatibility: threads, signals, allocations

Maybe their file browsing/loading is enough?
..better chances than supporting HTTP just right

Still need serialisation; at least breaking FS API is discouraged

Different processes, diferent rules

Well, some overhead; not so bad compared to SQL DB request
for large files, generate symlinks to them

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022

Remarks on implementation

Filesystem API in general
e Encodings: decide whether (or when) filenames must be valid UTF8..
FUSE

@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1ibfuse.so

e Hard to handle
o One-function shared library just to wrap this

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 15 /17

Remarks on implementation

Filesystem API in general
@ Encodings: decide whether (or when) filenames must be valid UTFS8...

FUSE
@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1libfuse.so

e Hard to handle
e One-function shared library just to wrap this

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 15 /17

Remarks on implementation

Filesystem API in general
@ Encodings: decide whether (or when) filenames must be valid UTFS8...

FUSE
@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1libfuse.so

e Hard to handle
e One-function shared library just to wrap this

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 15 /17

Remarks on implementation

Filesystem API in general
@ Encodings: decide whether (or when) filenames must be valid UTFS8...

FUSE
@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1libfuse.so

e Hard to handle
e One-function shared library just to wrap this

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 15 /17

Remarks on implementation

Filesystem API in general
@ Encodings: decide whether (or when) filenames must be valid UTFS8...

FUSE
@ The simple way to use FUSE: a framework

o Makes assumptions about threads...
o FUSE-managed threads + callbacks + GC... no good

@ One step below: actual functions... and tons of callbacks
o Works fine with CFFI

@ You do want to exit once the FS is unmounted

@ Symbol versioning in 1ibfuse.so

e Hard to handle
@ One-function shared library just to wrap this

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 15 /17

Query-FS: my usage

Email: indexed in PostgreSQL DB, read in Vim using Query-FS
Planet.Lisp.org (and many other feeds): same

®

[

Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

(]

File tagging: implemented... but | don't use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

[

Advanced FS functionality: inotify, mmap, etc.

®

Smarter caching based on lower-level FUSE API

(4

In-Lisp FUSE protocol parsing instead of libfuse
@ 9p

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 16 /17

Query-FS: my usage

@ Email: indexed in PostgreSQL DB, read in Vim using Query-FS
@ Planet.Lisp.org (and many other feeds): same

@ Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

o File tagging: implemented.. but | don’t use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

(4

Advanced FS functionality: inotify, mmap, etc.

®

Smarter caching based on lower-level FUSE API

(4

In-Lisp FUSE protocol parsing instead of libfuse
@ 9p

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 16 /17

Query-FS: my usage

@ Email: indexed in PostgreSQL DB, read in Vim using Query-FS
@ Planet.Lisp.org (and many other feeds): same

@ Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

o File tagging: implemented.. but | don’t use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

(4

Advanced FS functionality: inotify, mmap, etc.

®

Smarter caching based on lower-level FUSE API

(4

In-Lisp FUSE protocol parsing instead of libfuse
@ 9p

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 16 /17

Query-FS: my usage

@ Email: indexed in PostgreSQL DB, read in Vim using Query-FS
@ Planet.Lisp.org (and many other feeds): same

@ Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

o File tagging: implemented... but | don't use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

("]

Advanced FS functionality: inotify, mmap, etc.

®

Smarter caching based on lower-level FUSE API

(]

In-Lisp FUSE protocol parsing instead of libfuse
e 9p

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 16 /17

Query-FS: my usage

@ Email: indexed in PostgreSQL DB, read in Vim using Query-FS
@ Planet.Lisp.org (and many other feeds): same

@ Password manager: same, with master key to encrypt entries
Probably wasn't a very good idea...

o File tagging: implemented... but | don't use it

Not there (yet?):

@ Security model
by kernel default only same UID allowed

Advanced FS functionality: inotify, mmap, etc.
Smarter caching based on lower-level FUSE API
In-Lisp FUSE protocol parsing instead of libfuse
%

Michael Raskin, raskin@mccme.ru Query-FS March 21, 2022 16 /17

Thanks for your attention!

Questions?

https://gitlab.common-lisp.net/cl-fuse/query-fs

March 21, 2022 17 /17

