
Lisp in the middle:
using Lisp to manage a Linux system

Michael Raskin

TU Munich

2021-05-04

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 1 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Overview

What: random GNU/Linux system management
… beyond normal management: isolate some things

With what: Common Lisp at core, mix CL/Bash around
How: Lazily (lazy programmer, not lazy evaluation)
Why:

Too many small changes wanted
Too many upstream changes not wanted
Common Lisp code keeps working the same
Hards part of upstream code not useful to me

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 2 / 14



Talk overview

How it looks like
(not much to have a look!)

What happens behind the curtain
What else is there / should be there but isn’t
Lessons learned

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 3 / 14



Talk overview

How it looks like
(not much to have a look!)

What happens behind the curtain
What else is there / should be there but isn’t
Lessons learned

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 3 / 14



Talk overview

How it looks like
(not much to have a look!)

What happens behind the curtain
What else is there / should be there but isn’t
Lessons learned

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 3 / 14



Talk overview

How it looks like
(not much to have a look!)

What happens behind the curtain
What else is there / should be there but isn’t
Lessons learned

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 3 / 14



Demo

Brightness/CPU frequency change

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 4 / 14



Demo

Isolated Firefox

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 5 / 14



How it works? Invocation

User invokes in unprivileged Lisp image:

(ask-with-auth (:presence t)
`(set-cpu-frequency "min")
`(set-brightness 1))

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 6 / 14



How it works? Translation

Request translated:

("LIST"
("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

No symbols (except NIL), only strings
Looks the same in all Lisps

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 7 / 14



How it works? Authentication

Client process sends

("REQUEST-UID-AUTH" "raskin")

Server sends the path to an access controlled file
Client process reads the file
Client process sends:

("WITH-UID-AUTH" "JDPBTP56Y3LALB6FMA54"
("WITH-PRESENCE-AUTH" "T"

("LIST" ("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

15))

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 8 / 14



How it works? Authentication

Client process sends

("REQUEST-UID-AUTH" "raskin")

Server sends the path to an access controlled file
Client process reads the file
Client process sends:

("WITH-UID-AUTH" "JDPBTP56Y3LALB6FMA54"
("WITH-PRESENCE-AUTH" "T"

("LIST" ("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

15))

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 8 / 14



How it works? Authentication

Client process sends

("REQUEST-UID-AUTH" "raskin")

Server sends the path to an access controlled file
Client process reads the file
Client process sends:

("WITH-UID-AUTH" "JDPBTP56Y3LALB6FMA54"
("WITH-PRESENCE-AUTH" "T"

("LIST" ("SET-CPU-FREQUENCY" "min")
("SET-BRIGHTNESS" 1))

15))

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 8 / 14



How it works? Execution

Server interns names into special package
Physically present user asked,
then the following runs:

(socket-command-server-commands::set-cpu-frequency
context "min")

(context: information about user confirmation etc.)
Manual handling of keyword arguments — harder to forget filtering…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 9 / 14



How it works? Execution

Server interns names into special package
Physically present user asked,
then the following runs:

(socket-command-server-commands::set-cpu-frequency
context "min")

(context: information about user confirmation etc.)
Manual handling of keyword arguments — harder to forget filtering…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 9 / 14



Updates

Persistent state should be predictable
Normal approaches: global mutable state, lots of it
I want something cons-like, not (setf (elt x 7))!

Nix
Guix

Guix is in Guile, but using Nix because of package coverage
Updating the policy code: exit daemon and restart

Runtime state: in SQLite, on RAM FS
No expectation of perfection of policy code, crashes are fine
Can integrate multiple daemons if desired

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 10 / 14



Updates

Persistent state should be predictable
Normal approaches: global mutable state, lots of it
I want something cons-like, not (setf (elt x 7))!

Nix
Guix

Guix is in Guile, but using Nix because of package coverage
Updating the policy code: exit daemon and restart

Runtime state: in SQLite, on RAM FS
No expectation of perfection of policy code, crashes are fine
Can integrate multiple daemons if desired

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 10 / 14



Updates

Persistent state should be predictable
Normal approaches: global mutable state, lots of it
I want something cons-like, not (setf (elt x 7))!

Nix
Guix

Guix is in Guile, but using Nix because of package coverage
Updating the policy code: exit daemon and restart

Runtime state: in SQLite, on RAM FS
No expectation of perfection of policy code, crashes are fine
Can integrate multiple daemons if desired

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 10 / 14



Updates

Persistent state should be predictable
Normal approaches: global mutable state, lots of it
I want something cons-like, not (setf (elt x 7))!

Nix
Guix

Guix is in Guile, but using Nix because of package coverage
Updating the policy code: exit daemon and restart

Runtime state: in SQLite, on RAM FS
No expectation of perfection of policy code, crashes are fine
Can integrate multiple daemons if desired

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 10 / 14



Updates

Persistent state should be predictable
Normal approaches: global mutable state, lots of it
I want something cons-like, not (setf (elt x 7))!

Nix
Guix

Guix is in Guile, but using Nix because of package coverage
Updating the policy code: exit daemon and restart

Runtime state: in SQLite, on RAM FS
No expectation of perfection of policy code, crashes are fine
Can integrate multiple daemons if desired

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 10 / 14



What else is there

Request authorisation by entering root password
Generic password entry in dedicated VT
Isolating interactive CLI programs with terminal forwarded
shell-with-mounted-devices

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 11 / 14



What else is there

Request authorisation by entering root password
Generic password entry in dedicated VT
Isolating interactive CLI programs with terminal forwarded
shell-with-mounted-devices

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 11 / 14



What else is there

Request authorisation by entering root password
Generic password entry in dedicated VT
Isolating interactive CLI programs with terminal forwarded
shell-with-mounted-devices

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 11 / 14



What else is there

Request authorisation by entering root password
Generic password entry in dedicated VT
Isolating interactive CLI programs with terminal forwarded
shell-with-mounted-devices

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 11 / 14



What else should be there but isn’t

Prevent DoS via too many user confirmations
More options to prove client process details
Contribute other-side-of-the-socket system query support to IOLIB
JSON/XML protocol for interaction with non-Lisps?
Multi-device support
Integration with service supervision (Shepherd?)

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 12 / 14



What else should be there but isn’t

Prevent DoS via too many user confirmations
More options to prove client process details
Contribute other-side-of-the-socket system query support to IOLIB
JSON/XML protocol for interaction with non-Lisps?
Multi-device support
Integration with service supervision (Shepherd?)

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 12 / 14



What else should be there but isn’t

Prevent DoS via too many user confirmations
More options to prove client process details
Contribute other-side-of-the-socket system query support to IOLIB
JSON/XML protocol for interaction with non-Lisps?
Multi-device support
Integration with service supervision (Shepherd?)

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 12 / 14



What else should be there but isn’t

Prevent DoS via too many user confirmations
More options to prove client process details
Contribute other-side-of-the-socket system query support to IOLIB
JSON/XML protocol for interaction with non-Lisps?
Multi-device support
Integration with service supervision (Shepherd?)

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 12 / 14



What else should be there but isn’t

Prevent DoS via too many user confirmations
More options to prove client process details
Contribute other-side-of-the-socket system query support to IOLIB
JSON/XML protocol for interaction with non-Lisps?
Multi-device support
Integration with service supervision (Shepherd?)

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 12 / 14



Lessons learned

Not too hard to move system management to Lisp!
And to grow scope as desired

There are things I still prefer to do in POSIX Shell
SBCL REPL doesn’t promise to be shell to start interactive programs
Trying to write idiomatic Lisp highlights missing idioms on UIs
My comfort now relies on even more idiosyncratic tools…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 13 / 14



Lessons learned

Not too hard to move system management to Lisp!
And to grow scope as desired

There are things I still prefer to do in POSIX Shell
SBCL REPL doesn’t promise to be shell to start interactive programs
Trying to write idiomatic Lisp highlights missing idioms on UIs
My comfort now relies on even more idiosyncratic tools…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 13 / 14



Lessons learned

Not too hard to move system management to Lisp!
And to grow scope as desired

There are things I still prefer to do in POSIX Shell
SBCL REPL doesn’t promise to be shell to start interactive programs
Trying to write idiomatic Lisp highlights missing idioms on UIs
My comfort now relies on even more idiosyncratic tools…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 13 / 14



Lessons learned

Not too hard to move system management to Lisp!
And to grow scope as desired

There are things I still prefer to do in POSIX Shell
SBCL REPL doesn’t promise to be shell to start interactive programs
Trying to write idiomatic Lisp highlights missing idioms on UIs
My comfort now relies on even more idiosyncratic tools…

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 13 / 14



Thanks!

Thanks for your attention!

Questions?

https://github.com/7c6f434c/lang-os/

Michael Raskin (TU Munich) Lisp in the middle 2021-05-04 14 / 14


