
Data-transformer library

Michael Raskin

Moscow Center for Continuous Mathematical Education

April 2013

Michael Raskin (MCCME) Data-transformer library April 2013 1 / 16



User-visible problem:

Input data is garbage

Input data requirements are constantly changing

Programmer’s problems:

How to define data format?

How to keep all the code that touches a single piece of data always in
sync?

Michael Raskin (MCCME) Data-transformer library April 2013 2 / 16



User-visible problem:

Input data is garbage

Input data requirements are constantly changing

Programmer’s problems:

How to define data format?

How to keep all the code that touches a single piece of data always in
sync?

Michael Raskin (MCCME) Data-transformer library April 2013 2 / 16



Spreadsheet: “555-01-55 uses 2-digit year format, corrected to
555-01-1955”
User: “Let’s just sort the first column without sorting the second one then”

Michael Raskin (MCCME) Data-transformer library April 2013 3 / 16



Spreadsheet: “555-01-55 uses 2-digit year format, corrected to
555-01-1955”
User: “Let’s just sort the first column without sorting the second one then”

Michael Raskin (MCCME) Data-transformer library April 2013 3 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Initial scope:

Validating CSV data

Storing the data into a database

Presenting data in a PDF

Later added to scope:

Web forms

Currently web forms, csv files and SQL DB is used both for input and for
output in production; PDF export is also used all the time
And validating logic keeps getting more complex. . .

Michael Raskin (MCCME) Data-transformer library April 2013 4 / 16



Portable schemas

Portable

Declarative

Clear

Restricted functionality

Would my application survive porting anyway?
(Spoiler: not likely)
Make simple things declarative and complex things possible!

Michael Raskin (MCCME) Data-transformer library April 2013 5 / 16



Portable schemas

Portable

Declarative

Clear

Restricted functionality

Would my application survive porting anyway?
(Spoiler: not likely)
Make simple things declarative and complex things possible!

Michael Raskin (MCCME) Data-transformer library April 2013 5 / 16



Portable schemas

Portable

Declarative

Clear

Restricted functionality

Would my application survive porting anyway?
(Spoiler: not likely)
Make simple things declarative and complex things possible!

Michael Raskin (MCCME) Data-transformer library April 2013 5 / 16



Portable schemas

Portable

Declarative

Clear

Restricted functionality

Would my application survive porting anyway?
(Spoiler: not likely)
Make simple things declarative and complex things possible!

Michael Raskin (MCCME) Data-transformer library April 2013 5 / 16



Classical procedural programming: there is code, and you pass it
configuration and data
Classical OOP: there is an object, which contains configuration, and data,
and is associated with code
Hybrid model: create an object keeping configuration and code, and briefly
pass it actual data (usually used for complex processing of data streams)

Michael Raskin (MCCME) Data-transformer library April 2013 6 / 16



Process one record at a time
Schema: an s-expression, written by hand (can contain literal function
values and what not)
data-transformer instance:

Stores the schema in a better format with some caches, hashes, etc.

Briefly holds the data during processing

Data is not stored, it gets loaded, processed and exported in a quick
succession

Michael Raskin (MCCME) Data-transformer library April 2013 7 / 16



Process one record at a time
Schema: an s-expression, written by hand (can contain literal function
values and what not)
data-transformer instance:

Stores the schema in a better format with some caches, hashes, etc.

Briefly holds the data during processing

Data is not stored, it gets loaded, processed and exported in a quick
succession

Michael Raskin (MCCME) Data-transformer library April 2013 7 / 16



Process one record at a time
Schema: an s-expression, written by hand (can contain literal function
values and what not)
data-transformer instance:

Stores the schema in a better format with some caches, hashes, etc.

Briefly holds the data during processing

Data is not stored, it gets loaded, processed and exported in a quick
succession

Michael Raskin (MCCME) Data-transformer library April 2013 7 / 16



Process one record at a time
Schema: an s-expression, written by hand (can contain literal function
values and what not)
data-transformer instance:

Stores the schema in a better format with some caches, hashes, etc.

Briefly holds the data during processing

Data is not stored, it gets loaded, processed and exported in a quick
succession

Michael Raskin (MCCME) Data-transformer library April 2013 7 / 16



Process one record at a time
Schema: an s-expression, written by hand (can contain literal function
values and what not)
data-transformer instance:

Stores the schema in a better format with some caches, hashes, etc.

Briefly holds the data during processing

Data is not stored, it gets loaded, processed and exported in a quick
succession

Michael Raskin (MCCME) Data-transformer library April 2013 7 / 16



Record is an array of fields
Fields have parameters
Specify them or use default values; default values can depend on the
values of other fields
Data is an array of values stored in the same order as field definitions

Michael Raskin (MCCME) Data-transformer library April 2013 8 / 16



Record is an array of fields
Fields have parameters
Specify them or use default values; default values can depend on the
values of other fields
Data is an array of values stored in the same order as field definitions

Michael Raskin (MCCME) Data-transformer library April 2013 8 / 16



Input verification

Day, month and year should be numbers
input string verification

Year should be in the 20th or the 21th century
field content verification

Date should be possible, 31-02-2013 is a bad idea
global (cross-field) verification

Michael Raskin (MCCME) Data-transformer library April 2013 9 / 16



Input verification

Day, month and year should be numbers
input string verification

Year should be in the 20th or the 21th century
field content verification

Date should be possible, 31-02-2013 is a bad idea
global (cross-field) verification

Michael Raskin (MCCME) Data-transformer library April 2013 9 / 16



Input verification

Day, month and year should be numbers
input string verification

Year should be in the 20th or the 21th century
field content verification

Date should be possible, 31-02-2013 is a bad idea
global (cross-field) verification

Michael Raskin (MCCME) Data-transformer library April 2013 9 / 16



Input verification

Day, month and year should be numbers
input string verification

Year should be in the 20th or the 21th century
field content verification

Date should be possible, 31-02-2013 is a bad idea
global (cross-field) verification

Michael Raskin (MCCME) Data-transformer library April 2013 9 / 16



(defparameter *basic-schema*

‘(((:code-name :captcha-answer)

(:display-name "Task answer")

(:type :int)

(:string-verification-error

"Please enter a number")

(:data-verification-error "Wrong answer")

(:string-export ,(constantly "")))

((:code-name :email)

(:display-name "Email")

(:type :string)

, (matcher "^(.+@.+[.].+|)\$")

(:string-verification-error

"Email is specified but it doesn’t

look like a valid email address"))))

Michael Raskin (MCCME) Data-transformer library April 2013 10 / 16



(let

((schema (transformer-schema-edit-field

*basic-schema* :captcha-answer

(lambda (x)

(set-> x :data-verification

(lambda (y)

(and y (= y captcha-answer))))))))

; some code using the schema

)

Michael Raskin (MCCME) Data-transformer library April 2013 11 / 16



Typical attributes:

code name (for HTML form, SQL schemas, etc.)
(:code-name :captcha-answer)

readable name
(:display-name "Task answer")

field type (mainly for SQL schemas; also sets reasonable defaults for
validation and parsing)

(:type :int)

validation procedures and error messages
(:string-verification-error

"Please enter a number")

data formatting
(:string-export ,(constantly ""))

Michael Raskin (MCCME) Data-transformer library April 2013 12 / 16



Typical attributes:

code name (for HTML form, SQL schemas, etc.)
(:code-name :captcha-answer)

readable name
(:display-name "Task answer")

field type (mainly for SQL schemas; also sets reasonable defaults for
validation and parsing)

(:type :int)

validation procedures and error messages
(:string-verification-error

"Please enter a number")

data formatting
(:string-export ,(constantly ""))

Michael Raskin (MCCME) Data-transformer library April 2013 12 / 16



Typical attributes:

code name (for HTML form, SQL schemas, etc.)
(:code-name :captcha-answer)

readable name
(:display-name "Task answer")

field type (mainly for SQL schemas; also sets reasonable defaults for
validation and parsing)

(:type :int)

validation procedures and error messages
(:string-verification-error

"Please enter a number")

data formatting
(:string-export ,(constantly ""))

Michael Raskin (MCCME) Data-transformer library April 2013 12 / 16



Typical attributes:

code name (for HTML form, SQL schemas, etc.)
(:code-name :captcha-answer)

readable name
(:display-name "Task answer")

field type (mainly for SQL schemas; also sets reasonable defaults for
validation and parsing)

(:type :int)

validation procedures and error messages
(:string-verification-error

"Please enter a number")

data formatting
(:string-export ,(constantly ""))

Michael Raskin (MCCME) Data-transformer library April 2013 12 / 16



Typical attributes:

code name (for HTML form, SQL schemas, etc.)
(:code-name :captcha-answer)

readable name
(:display-name "Task answer")

field type (mainly for SQL schemas; also sets reasonable defaults for
validation and parsing)

(:type :int)

validation procedures and error messages
(:string-verification-error

"Please enter a number")

data formatting
(:string-export ,(constantly ""))

Michael Raskin (MCCME) Data-transformer library April 2013 12 / 16



CAPTCHA verification is injected into the schema right before use

(transformer-schema-edit-field

*basic-schema* :captcha-answer

(lambda (x)

(set-> x :data-verification

(lambda (y)

(and y (= y captcha-answer))))))

Michael Raskin (MCCME) Data-transformer library April 2013 13 / 16



Channel-specific features

CSV: convert date fields into triples of fields for data components
(also for web forms)

SQL: specifying foreign keys; WHERE-conditions and source tables
for generating queries

Web forms: HTTP POST requests; file upload handler

Web forms and PDF: preparation for CL-Emb templates

Michael Raskin (MCCME) Data-transformer library April 2013 14 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Was it a good idea?

Reinventing the wheel? No previous wheel found

Very few cases of save and load (or similar) code being mismatched.
Nice

Complex checks are still simple to integrate

The more advanced, the less portable

Some schema field parameters are coupled not just to Common Lisp,
but to CLSQL, CL-Emb, etc.

Feature-poor portable declarative schemas are generated
automatically and correctly when needed

Schema-using code mostly untouched; individual schemas relatively
short and simple. Helps near deadlines in understaffed projects

Small API quirks accumulate. Not specific to our library

Wasteful implementations of some functionality

Michael Raskin (MCCME) Data-transformer library April 2013 15 / 16



Thanks for your attention!

Michael Raskin (MCCME) Data-transformer library April 2013 16 / 16


