Определители и пути

- ightharpoonup Пусть Γ ориентированный граф без ориентированных циклов, (s_1, \ldots, s_n) и (t_1, \ldots, t_n) наборы его вершин. Будем рассматривать наборы путей P, приводящие из вершин s. в вершины t.. Каждый такой набор осуществляет некоторую перестановку индексов σ_P . Матрицей путей ориентированного графа будем называть матрицу, в клетке (i,j) которой стоит число (ориентировнных) путей из вершины i в вершину j.
 - **Задача 1.** Количество наборов путей P из s. в t., посчитанных со знаками sign σ_P , равно соответствующему минору матрицы путей графа.
 - Задача 2. Количество непересекающихся наборов путей P из s. в t., посчитанных со знаками, равно соответствующему минору матрицы путей графа для а) n=2; б) произвольного n.
 - **Задача 3.** Количество непересекающихся путей на квадратной решетке из точек $(0, a_i)$ в точки $(b_i, -b_i)$ равно определителю матрицы с элементами $\binom{a_i}{b_i}$.
 - **Задача 4 (формула Коши–Бине).** Если A матрица $m \times n, B$ матрица $n \times m,$ то

$$\det(AB) = \sum_{S} \det A_S \det B_{S^T},$$

где сумма ведется по парам соответствующих миноров порядка m.

Определители и паросочетания

- ightharpoonup Пусть Γ двудольный граф с ориентированными ребрами. Его *ориентированной* (двудольной) матрицей смежности будем называть матрицу I, $I_{ij}=1$, если из i-й черной вершины ведет ребро в j-ю белую, $I_{ij}=-1$, если ребро направлено в обратную сторону, $I_{ij}=0$ иначе.
- ▶ Напомним, что *паросочетанием* в графе называется набор ребер без общих вершин; паросочетание назывется *совершенным*, если оно покрывает все вершины.
 - **Задача 5.** Пусть в двудольном графе поровну черных и белых вершин поровну, постройте биекцию между ненулевыми слагаемыми в $\det I$ и совершенными паросочетаниями в графе Γ .
- Внак этого слагаемого будем называть знаком совершенного паросочетания. (Заметим, что знаки паросочетаний зависят от выбора ориентаций ребер.)
 - Задача 6. Если двудольный граф Γ планарен, то его ребра можно ориентировать так, чтобы все паросочетания имели одинаковый знак. (И, таким образом, число совершенных паросочетаний в нем вычисляется определителем матрицы I.)
 - Задача 7. Пусть Γ произвольный планарный граф с ориентированными ребрами. Тогда число совершенных паросочетаний в нем вычисляется пфаффианом его матрицы смежности.

Перечисление остовных деревьев

ightharpoonup Пусть Γ — ориентированный граф, ∂ — его матрица смежности (матрица отображения ребро \mapsto конец — начало).

Задача 8 (матричная теорема о деревьях).

- а) Пусть в графе Γ вершин на одну больше, чем ребер. Тогда максимальный минор матрицы смежности равен ± 1 , когда Γ является деревом, и 0 иначе.
- б) Для произвольного графа Γ главный минор матрицы Лапласа $\Delta = \partial \partial^*$ равен числу остовных деревьев графа.
- в) На диагонали матрицы Δ стоят степени вершин, а вне диагонали (-1) для пар вершин, соединенных ребром, и 0 для не соединенных.

Задача 9. Число деревьев с n пронумерованными вершинам есть n^{n-2} . (Указание: примените матричную теорему к полному графу.)

 \triangleright Будем теперь рассматривать наш граф Γ как электрическую схему. Сопротивление каждого ребра будем считать равным 1, источник питания подключим к вершинам a и b и подадим такое напряжение, чтобы ток был равен 1.

Напомним, что законы Кирхгофа для этой цепи имеют вид

$$\begin{cases} \partial j = \delta_b - \delta_a, \\ -\partial^* \phi = j, \end{cases}$$

где j — токи через ребра, а ϕ — потенциалы вершин.

Задача 10 (теорема Кирхгофа). Ток через ребро *ab* равен доле остовных деревьев, содержащих это ребро.

(Указание: для решения линейной системы можно воспользоваться правилом Крамера.)

Задача 11 (сложная). Пусть K(e, f) — ток через ребро f при подключении батарейки к ребру e. Попробуйте доказать, что доля остовных деревьев, содержащих данную группу ребер, равна соответствющему минору матрицы K (даже для двух ребер уже интересно).