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MM
athematicians often ask, ‘‘what is the best proof’’ of
something, and indeed Erdös used to speak of
‘‘Proofs from the Book,’’ meaning, of course, God’s

book. Aigner and Ziegler (1998) have attempted to recon-
struct some of this Book.

Here we take a different, and more tolerant approach. We
shouldn’t speak of ‘‘the best’’ proof, because different people
will value proofs in different ways. Indeed one person’s
value might oppose another’s. For example, a proof that
quotes well-known results from Galois theory will be valued
negatively by someone who knows nothing of that theory,
but positively by the instructor in a course on Galois theory.
Other ‘‘values’’ that have been proposed include brevity,
generality, constructiveness, visuality, nonvisuality, ‘‘sur-
prise,’’ elementarity, and so on. A single mathematician may
holdmore thanoneof the values dear. Clearly theordering of
proofs cannot be a total order.

It is enjoyable and instructive tofindproofs that are optimal
with respect to one or more such value functions, not only
because they tend to be beautiful, but because they are more
likely to point to possible generalizations and applications.

In this respect we can discard a proof C that uses all the
ideas of shorter proofs A and B, because nobody should
value it more highly than both A and B. We model this by
putting C on the line segment AB, and it suggests thatwe think
of proofs of a given result as lying in a convex region in some
kind of space, which in our pictures will be the Euclidean
plane.

Indeed, because at any given time there are only finitely
many known proofs, we may think of them as lying in a
polyhedron (in our pictures, a polygon), and the value func-
tions as linear functionals, as in optimization theory, so that
any value function must be maximized at some vertex. We

shall call the proofs at the vertices of this polygon the extreme
proofs.

It can be difficult to decide whether two proofs are ‘‘really
the same.’’ Usually a proof has a natural domain of applica-
bility,whichwe shall call its ‘‘scope,’’ and this provides uswith
the ‘‘scope test,’’ a necessary condition for essential difference:
proofs are ‘‘really different’’ if they have different scopes.

The Irrationality of H2
This article will explore the proof space of one of the oldest
and most familiar theorems of all: that there is no rational
number a/b whose square is 2. This was traditionally credited
to Pythagoras, but it is perhaps more correct to ascribe it to the
Pythagorean school, for Iamblichus tells us of the rule that all
discoveries of this school were attributed to its founder.

According to Plato’s Theaetetus, Theodorus, demonstrated
how to prove the irrationality of square roots of nonsquare
numbers up to 17, an assertion that has given rise to much

Figure 1. A visualization of ‘‘proof space’’.
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speculation about the reason he stopped there. It has been
suggested that the reason might be that the proofs were geo-
metrical and differed from case to case. Our first proof is one
Theodorus might have used for H2.

Tennenbaum’s ‘‘Covering’’ Proof
The assertion that H2 is the quotient p/q of two integers is
equivalent to p2 = 2q2, which is equivalent to the assertion that
a p 9 p square has the same area as two q 9 q ones.

Stanley Tennenbaum therefore supposes that the large
square at left in Figure 2a is the smallest one of integral side
(p) that has the same area as two smaller ones of equal integer
side (q) at right. Then, fitting the two smaller squares into
opposite corners, we obtain Figure 2b, in which the central
doubly covered square has the same total area as the two
uncovered ones, a smaller example than we started with—a
contradiction.

Discussion

Traditionally, this type of argument is called a ‘‘proof by des-
cent,’’ and it relies on the principle (usually tacitly assumed by
the ancients) that any nonempty set of positive integers has a
least element.

This type of proof is difficult to generalize, but a glance at
Figure 2c suggests a similar proof forH3, and you might find
one for H5 after studying Figure 2d.

‘‘Folding’’ Proofs
A traditional Greek statement of our theorem is that the diag-
onal and side of a square are incommensurable; that is, they
cannot both be integer multiples of a common (‘‘unit’’) length.
Suppose they are, and let the smallest such pair of integers be
p and q as in Figure 3a (inmodern terms,H2= p/q). Folding the
half-square triangle as in Figure 3b, we see that there is a
smaller half-square triangle with integer sides, contradiction.

Discussion

In some sense this proof is mechanically the same as Ten-
nenbaum’s; both suppose that the fraction in least terms that
representsH2 is p/q, and deduce the same contradiction, that
(q - (p - q))/(p - q) is a smaller one. It also assumesbasic facts
about Euclidean geometry, including the Pythagorean theo-
rem. In effect, bothproofs carry out geometrically the first step

in the division algorithm that is at the heart of the Unique
Factorization Theorem (also known as the Fundamental
Theorem of Arithmetic).

However, our ‘‘scope test’’ shows that this proof is more
general than the covering proof, because essentially the same
proof works for showing the irrationality of square roots of
numbers of the form n2 + 1:

As before, all labeled sides have integer lengths and the
fold shows a smaller triangle with integer-length sides that is
similar to the original one. Apostol (2000) provided a similar
proof.

Just as we needed a geometric equivalent to the division
algorithm, to perform this proof in the style of Euclid requires
the geometrical equivalent of the fact that any set of positive
integers has a smallest element, namely the Archimedean
axiom that given any two segments, some multiple of each
segment exceeds the other in length.

An analogous proof handles the case of H(n2 - 1) (as was
also noted by Apostol): use a right triangle with base q, hypot-
enuseqn, andheightp= qH(n2 -1), andmake the ‘‘same fold.’’

We thus obtain proofs for the irrationality of the square
roots of 2, 3, 5, 8, 10, 15, 17, 24, 26, 35, 37, 48, 50, 63, 65, 80, 82,
99, … (of course 8 already follows from 2).

We can also handle 6 because H6 = �H24, and 7 because
H7 = (1/3)H63, and H11 because H11 = (1/3)H99.

We observe that this trick works for all nonsquares
D because the Pell equation x2 - 1 = Dy2 is always solvable in
integers (Stark 1978). This is not true for the form x2 + 1 in
some cases, for example when D = 7, so it was necessary to
generalize the proof to handle H(n2 - 1).

No surviving manuscripts indicate that the ancient Greeks
knew this fact (although we would not put it past Diophantus
or Archimedes). They were certainly capable of finding the
‘‘geometric proof’’ that we now know always exists, in any
particular case. Thus, Theodorus could have had a geometric
proof in the style of Euclid for all D.

For D = 13, the smallest solution is (6492 - 1 = (13)(180)2),
so theoriginal ‘‘n2 +1’’ proofworksbest (182 + 1= (13)52). For
D = 14 we can use (152 - 1 = (14)42). This provides a possible
explanation for why Theodorus stopped at 17; to do 19
requires finding (1702 - 1 = (19)(39)2). It would have been
even more difficult to demonstrate proofs for D = 31
(15202 - 1 = (31)(273)2), and for D = 61 where the smallest
solution is (29,7182 + 1 = (61)(3805)2).
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‘‘Traditional’’ Even/Odd Proof
The traditional arithmetical proof is to suppose that H2 =
p/q in least terms, so that p2 = 2q2. But the square of an odd
number is odd, so p must be even; say it equals 2r. Now
4r2 = 2q2, and we deduce q2 = 2r2, showing H2 equals the
‘‘simpler’’ fraction q/r.

Discussion

This proof is ‘‘extreme’’ in seeming to depend on the most
elementary concepts. We did need the fact that fractions have
canonical ‘‘least’’ forms, implying that any set of positive
integers has a smallest element. Also, we are relying on the
division of integers into two classes, ‘‘even’’ and ‘‘odd,’’ with
the property that a product is odd iff both factors are odd:

* even odd
even even even
odd even odd

How much does this proof generalize? Note that the same
argumentworks forhigher-order roots, because the table implies
that any power of an odd number is odd, not just its square.

We can replace 2 by any prime and the proof is the same.
Call a number ‘‘3even’’ (pronounced ‘‘threeven’’) if it is divis-
ible by 3, otherwise it is ‘‘3odd’’ (‘‘throdd’’), for instance; then

* 3even 3odd
3even 3even 3even
3odd 3even 3odd

.

Of course, in using the fact that a prime divides a product
only if it divides one of the factors, we are assuming the key
lemma necessary to prove the Unique Factorization Theorem;
this lemma is obvious for the prime 2, but we didn’t totally
avoid ‘‘unique factorization.’’

This proof doesn’t work for nonprimes (2 and 3 are 6odd
but their product isn’t). To generalize to roots of nonprimes,

Figure 2. ‘‘Covering’’ proofs.
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we need to make a bigger table with more residue classes, but
that’s not really the ‘‘same proof’’ any longer.

Bashmakova’s Proof
We don’t know whether Theodorus stopped before or after
proving the theorem for 17, and he apparently could not
handle the general case (in the dialogue, Theaetetus claims to
have improved on Theodorus by proving the general case).
But here is a proof that works ‘‘up to 17,’’ according to the
Russian historian of mathematics, Isabella Bashmakova
(Bashmakova and Lapin 1986):

Suppose p2 = Nq2, with p/q in least terms. If N is divisible
by 4, we may replace N by N/4 until it isn’t. Suppose N is even
but not divisible by 4: then p2 is even, so p is, so p2/2 is, so
(N/2)q2 is, so (since N/2 is odd) q2 is, so q is, so p/q is not in
least terms, contradiction. So assume N is odd. Since at least
one of p and q must be odd, both are, so p2 and q2 are both 1
mod 8, so N is also. Thus we obtain a contradiction for any
N except 1, 9, 17, 25, 33, … of which 17 is the first nonsquare
and so the first failure of the proof.

Discussion

In one sense, this is not an ‘‘extreme’’ proof, because it treats
the cases of even and odd N with different ideas, and in fact for

N =2 it is really the sameas the ‘‘Traditional’’ proof.We include
it for historical interest and because the ‘‘remainder’’ argument
is a distinctly new idea even though it only applies for n equal
to 3, 5, or 7 mod 8.

Reciprocation Proof
This proof (from Conway and Guy 1996) overcomes the
Unique Factorization difficulty. Suppose again that H2 =
P/Q. Then it also equals 2/H2 = 2Q/P. These two numbers
P/Q and 2Q/P have ‘‘fractional parts’’ expressible as q/Q and
p/P, which must be equal. But then P/Q and p/q must be
equal, so that p/q is the desired simpler fraction because
p\P and q\Q.

Discussion

This handles HN for any nonsquare N without invoking
Unique Factorization; however, it does use ‘‘division with
remainder’’ once; this much is unavoidable if the notion of
‘‘fractional part’’ is to make sense. Euclid (Elements) also
provides a proof (Book X, Proposition 9) with this ‘‘scope.’’

Unique Factorization Proof
Let a and b be positive integers. There is a prime factorization
of a2 (obtained by doubling the exponents in a prime factor-
ization of a) in which the exponent of 2 is even, and similarly
forb2; but then2b2has a factorization inwhich theexponentof
2 is odd, and, by the Fundamental Theorem of Arithmetic,
different factorizations must be of different numbers, so a2

cannot equal 2b2, and a/b is not a square root of 2.

Discussion

This proof uses a hammer to crack a nut. It is not self-con-
tained, because we have not proven the Fundamental
Theorem of Arithmetic. It clearly generalizes to show that no
rational number can be the nth root of an integer that is not a
perfect nth power: for the exponents of the primes in the
factorizations of an and bn are divisible by n, and if an is to
equal kbn then all the exponents in the prime factorization of
k must also be divisible by n, and when you divide them all by
nyouobtainan integerwhosenth power isk.Howis thisproof
‘‘extreme’’? Well, it’s the shortest proof and the most trans-
parent proof if the Fundamental Theorem of Arithmetic
‘‘comes for free,’’ and it generalizes to arbitrary integers inboth
the base and the exponent.

After explaining how he had shown the irrationality of
square roots, Theaetetus remarked ‘‘and the same for solids,’’
suggesting that he also had a way to handle cube roots. Wayne
Aitken has noted (FOM [Foundations of Mathematics] e-mail
discussion list archived at http://www.cs.nyu.edu/pipermail/
fom/2007-November/012259.html) that, even though Euclid
never stated the Fundamental TheoremofArithmetic, onemay
use his proposition VIII.8 to derive the irrationality of nth roots
by an argument similar to Euclid X.9, which treats square roots.

Analytic Proof
This proof, presented in Laczkovich (2001), is a quickie for
thosewhoknowsomealgebra.Forpositive integersn, (H2-1)n

has the form aH2 + b where a and b are integers, not nec-
essarily positive. But ifH2 were rational with denominator D,
then for integral a,b, aH2 + b would be rational with

Figure 3. ‘‘Folding’’ proofs.
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denominator dividing D, and so could not approach a limit of
0, as (H2 - 1)n must, since 0\(H2 - 1)\1.

Discussion

From this type of argument one may learn not only that H2 is
irrationalbut also somequantitative informationonhowclosely
it can be approximated by rationals. The proof obviously gen-
eralizes to other square roots; only slightly less obviously,
it generalizes to ‘‘kth roots,’’ using expressions of the form
aN (k-1)/k + bN (k-2)/k +…+ yN 1/k + z, which will have
denominators no larger than Dk-1 if N 1/k is rational with
denominator D.

In fact, the proof generalizes further still and shows that all
real algebraic integers (roots of polynomials with integer coef-
ficients and a highest-degree coefficient of 1) are either integers
or irrational numbers. All youhave tonote is that higher powers
of the root can be replaced recursively by sums and differences
of lowerpowers, because the root satisfies amonicpolynomial.

Because we took advantage of a new principle, that every
real number is ‘‘close to an integer’’ (a distance of at most �),
this generalization is even more ‘‘extreme’’ than the one from
the Unique Factorization proof.

Conclusion
All these proofs show the irrationality of various num-
bers; in the order we have presented them, each one
handled some new cases to which the previous proofs
did not apply. We summarize the seven proofs in the
table that follows and provide a diagram illustrating their
‘‘scopes.’’

Summary

Relationships Between Proofs, with Examples
of All Possibilities

Name of Proof Domain of

Applicability

Key Idea Remarks Why Proof is ‘‘Extreme’’

Covering H2, H3, H? Doubly covered

= uncovered

n = 2 case due to Stanley Tennenbaum;

n = 3 due to Conway

Visually obvious

Folding Square roots

of (n2 + 1)

Folding a triangle Apostol (2000):

Similar proof for (n2 - 1).

Conway and Shipman: handles all

integers by Pell equation theory

Purely geometrical

Traditional Even/

Odd

All roots of primes Even-odd argument Who first noted this works for any prime? Depends on simplest

concepts

Bashmakova’s Square roots of integers

=1 mod 8

Remainder argument Isabella Bashmakova and A. I.

Lapin (1986) noted connection

to Theaetetus’s Theodorus (Plato)

Historical interest?

Reciprocation Square roots of all integers 1 Step of division algorithm Conway and Guy (1996) Purely arithmetical; ‘‘slickest’’

Unique Factorization All roots of all integers Compare exponents

in factorizations

Who first stated that all roots

of non-powers are irrational?

Most useful, shortest if

Unique Factorization Theorem

assumed

Analytic Algebraic Integers Analytic estimate Laczkovich [L] gives proof for

H2, generalizes to roots of Integers

Most general, quantitative,

‘‘Surprising’’
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